آخرین خبرها
خانه / دینلمیک سازه Structural Dynamic / دینامیک سازه‌ها (به انگلیسی: Structural dynamics) چیست؟
دینامیک سازه‌ها (به انگلیسی: Structural dynamics) چیست؟

دینامیک سازه‌ها (به انگلیسی: Structural dynamics) چیست؟

دینامیک سازه‌ها (به انگلیسی: Structural dynamics) زیر شاخه‌ای ست از تحلیل سازه‌ها و تئوری ارتعاشات است که به آنالیز و مطالعه رفتار سازه‌ها تحت اثر بارهای دینامیکیمی‌پردازد.

بارهای وارده بر سازه در بعضی موارد ممکن است از نظر مقدار، جهت و موقعیت تغییراتی نسبت به زمان داشته باشند. این بارها را اصطلاحاً بارهای دینامیکی گویند. در چنین حالتی رفتار سازه «مقادیر تغییر شکلها، نیروهای داخلی و تنشها» وابسته به زمان خواهد بود؛ بنابراین رفتار سازه در این حالت بر عکس رفتار استاتیکی آن جواب منحصربه‌فردی نخواهد داشت، بلکه در هر لحظه از زمان، رفتار خاصی برای آن موجود خواهد بود که به آن رفتار دینامیکی می‌گویند.

در اثر اعمال بارهای دینامیکی، تغییر مکان حاصله همراه با سرعت و شتاب خواهد بود. جهت مقابله با شتاب وارده، نیرویی به نام نیروی لختی در اثر جرم و جهت مقابله با سرعت، نیروی میرایی در اثر اصطکاک بین ذرات، لقی اتصالات و غیره بوجود می‌آید؛ بنابراین نیروهای داخلی سازه نه تنها می‌باید با بارگذاری اعمال شده بر آن در تعادل باشند، بلکه نیروهای لختی ناشی از شتاب و میرایی ناشی از سرعت نیز در تعادل مؤثر می‌باشند. از جمله اثرات دینامیکی وارد بر سازه‌ها و ساختمان‌ها می‌توان به موارد زیر اشاره کرد:

  1. اثر زلزله
  2. نیروی باد
  3. نیروی ناشی از امواج بر سازه‌های دریایی
  4. اثر انفجارها
  5. بارهای متحرک ترافیکی
  6. پی ماشین آلات

اجزای تشکیل دهنده یک سیستم ارتعاشی شامل جرم، فنر، میرا کننده و نیروی محرک است که برای سیستم‌های حقیقی معمولاً پیوسته هستند؛ ولی در بیشتر مواقع با جایگزین کردن خواص پیوسته به صورت ناپیوسته ممکن است تجزیه و تحلیل را ساده‌تر نمود. بعد از آنکه خصوصیات مکانیکی هر جزء تعیین گردید، آنالیست در وضعیتی می‌باشد که می‌تواند یکمدل ریاضی تشکیل دهد که نمایانگر سیستم حقیقی است.
با توجه به مطالب ذکر شده، سیستم‌های ارتعاشی را می‌توان بر حسب نوع مدل ریاضی به دو دسته طبقه‌بندی نمود؛ مدل‌های پیوسته دارای تعداد درجات آزادی معینی هستند، حال آنکه سیستم‌های ناپیوسته دارای بی‌نهایت درجه آزادی هستند. طبق تعریف درجه آزادی عبارتست از تعداد مختصات مستقل برای توصیف حرکت یک سیستم.

معادلات حرکت، روابط ریاضی حاکم بر تغییر مکانهای دینامیکی دستگاه‌ها می‌باشد. معادلات حرکت به طور کلی از سه روش مختلف بدست می‌آیند که هرکدام از آن‌ها در حالت خاص ممکن است از دو روش دیگر مناسبتر باشد.

  1. قوانین حرکت نیوتن (اصل دالامبر)
  2. اصل هامیلتون
  3. اصل کار مجازی

روش دیگری که می‌توان با آن معادلات حرکت را بدست آورد استفاده از ضریب تأثیر است. هدف از ارائه این روش تفهیم تعبیر فیزیکی عناصر ماتریسهای ضرایب است که در معادلات حرکت ظاهر می‌شود.
MX¨+CX˙+KX=F(t){\displaystyle M{\ddot {X}}+C{\dot {X}}+KX=F(t)}

انتشار توسط 8 تم

درباره‌ی سامانه نظام مهندسی

جوابی بنویسید

ایمیل شما نشر نخواهد شدخانه های ضروری نشانه گذاری شده است. *

*